

Corporate Presentation

Sean Monclús

ENVAC World leader in Automated Waste Collection

- Over 600 installations in 30 countries
- First installation in 1961 still in operation
- Over 40 installations worldwide with a running time over 30 years
- Closer to 40 offices in over 20 countries
- 5 regions and 18 fully controlled sales companies

Traditional Waste Handling

...is labour intensive with often poor working conditions

How the system works

Envac Applications

City Centres/ Residential

Hospital

Airport

Kitchen

Two systems compared

 Environmental impact comparison between a manual collection and the Envac System, done for the project of Hammarby (Sweden).

Emissions to air through waste trucks in area

Relative comparison

Consequences for the living environment

Conventional collection

outdoor noise for the whole area Västra Hammarby Siöstad

Type of noise source	Duration of the noise event	Noise level	sourc es	Number of noise events [per
	[time]	[dBA]	[No. of]	source & week]
By collection point for rear loader truck	4 min	75-88	228	3
Vehicle movements in area	38 min	75?	The whole area	3
Total noise impact for the whole area per week	17 h	75-88		

Stationary vacuum system

outdoor noise for the whole area

Västra Hammarby Sjöstad

Vastra Harrinarby Ojostau				
Type of noise source	Duration of the noise event	Noise level	Noise sourc es	Number of noise events
	[time]	[dBA]	[No. of]	[per source & week]
Air inlet valve (1 m distance)	10 sek	55-72	20	280
Outdoor inlet (1 m distance)	5 sek	55-72	135	1890
Total noise impact for the whole area per week	4 h	55-72		

Environmental impact from waste handling traffic – heavy duty

per year	Conventional	UWT
(normal duty in brackets)		
Driving distance	2 881 km	250 km
	(2 828 km)	(208 km)
No. of inter-	19 188 st	1 972 st
sections needed to be crossed	(19 084 st)	(1 560 st)
No of hours in	4 238 h	213 t
the area *1	(3 718 h)	(177 h)

***1 *** 2006-03-20

Konventionellt Tömningar =81,0h 14 turer => 16*2*0,4/30 =0,43h Totalt 81,5h Sopsug Tömningar 12 st á 0,33h = 3,96h 12 turer => 4,8 km => 0,16h Totalt 4,12h *, 2006-Mar-20

Comparison between Low & High densities areas

- Comparing 2 pneumatic collection projects of different densities:
 - Low density area.
 - 1500 Rue Ottawa + Griffintown + Lachine Canal: High density.

	LOW DENSITY AREA	HIGH DENSITY AREA
На	250	46
Units	10.000	7.000
Ha. Commercial & Offices	8	10
Equivalent dwellings	12.600	8.000
€ installation	31.119.711	10.663.630
€/Eq. Dwelling	2.470	1.333

1

Envac systems are resistant to hard weather conditions

Inlets on the street / snow

Tromso, Norway

Located 250 km north of the Polar Circle, Trömso with its 62,000 inhabitants is one of the world's northernmost cities Other Facilities

Disney World Orlando

USA

Type of system: Start up operation: Capacity:

Fraction:

SVS 500 1974 11 tn / dia

1

Eriksberg, Gothenburg, Sweden

Optibag Systems

How does it work?

0

The refuse lorry deposits its load in the receiving hopper. It is then transferred for sorting via a sheet conveyor belt. The material is divided between a suitable number of sorting lines. The number of lines is determined by the capacity requirement.

The bags are placed on a conveyor belt to the ejectors, which detect the colour. An ejector arm pushes the relevant bags onto a conveyor belt underneath. Each line sorts around 5 tons per hour.

The sorted bags are delivered to containers or direct via conveyors for further checks and final processing. This may involve opening the bags, sifting, fine screening, baling, etc.

